Use of cavity ring-down spectrometry to quantify 13 C-primary productivity in oligotrophic waters

D. Lopez-Sandoval, A.D. Huertas, P. Carrillo-De-Albornoz, C.M. Duarte, S. Agustí
Limnology and Oceanography Methods , (2019)

Use of cavity ring-down spectrometry to quantify 13 C-primary productivity in oligotrophic waters

Keywords

Cavity ring, Isotopic signals, CRDS technique

Abstract

Cavity ring-down spectroscopy (CRDS) is a highly sensitive laser technique that allows the analysis of isotopic signals and absolute concentration of individual molecular species in small-volume samples. Here, we describe a protocol to quantify photosynthetic 13 C-uptake rates of marine phytoplankton by using the CRDS technique (13 C-CRDS-PP). We validated our method by comparing the 13 C-PP rates measured between CRDS and isotope ratio mass spectrometry (IRMS) in samples with different carbon content (30-160 μgC). The comparison revealed that 13 C-CRDS-PP rates were highly correlated with those obtained by IRMS (Spearman correlation coefficient, ρ = 0.95, p < 0.0001, n = 15), with a mean difference between the two estimates of AE 0.08 mgC m −3 h −1. Moreover, the slope of the relationship between CRDS and IRMS results was not significantly different from 1 (F = 0.03, p = 0.86), and the intercept did not differ from 0 (F = 1.4, p = 0.24), indicating that there was no bias in the CRDS relative to the IRMS-based measurements. A separate analysis also showed that despite the difference in volume and carbon content between samples (40 AE 10 μgC and 160 AE 40 μgC, respectively), the 13 C-CRDS-PP technique provides similar results (Mann-Whitney test, U = 30.5, p = 0.90, n = 8). In addition, 13 C-CRDS-PP rates measured along the Red Sea ($ 176 mgC m −2 d −1) agreed with 14 C-based PP rates previously reported for similar locations. Thus, this study evidenced that the 13 C-CRDS-PP method is sensitive enough to quantify carbon fixation rates in oligotrophic regions.

Code

DOI: 10.1002/lom3.10305

Sources

Website PDF

See all publications 2019