Semantic similarity and machine learning with ontologies.

Maxat Kulmanov, Fatima Zohra Smaili, Xin Gao, Robert Hoehndorf
Briefings in Bioinformatics, (2020)

Keywords

machine learning, semantic similarity, ontology, knowledge representation, neuro-symbolic integration

Abstract

Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models.


Code

10.1093/bib/bbaa199/5922325

Sources

Website PDF